
810-005, Rev. E

DSN Telecommunications Link
Design Handbook

1 of 36

208, Rev. A
Telemetry Data Decoding

May 18, 2009

Prepared by:

 Approved by:

Robert. W. Sniffin Date
System Engineer

 Timothy. T. Pham Date
DSN Chief System Engineer

 Released by:

Signature on file at DSN Library

 DSN Document Release Date

© <2009> California Institute of Technology.

Government sponsorship acknowledged.

810-005, Rev. E
208, Rev.A

2

Change Log

Rev Issue Date Affected
Paragraphs

Change Summary

Initial 11/30/2000 All Initial Release

Chg 1 03/31/2004 Figures 3, 17

Corrects third generator polynomial hexadecimal
representation in Figure 3. Removes implication
in Figure 17 that Turbo code performance can be
extrapolated below FER=10–5

A 05/18/2009 All
Deletes obsolete code types. Provides additional
information on supported codes. Adds LDPC
codes as a proposed capability

Notes to Readers

There are two sets of document histories in the 810-005 document that are
reflected in the header at the top of the page. First, the entire document is periodically released
as a revision when major changes affect a majority of the modules. For example, this module is
part of 810-005, Revision E. Second, the individual modules also change, starting as an initial
issue that has no revision letter. When a module is changed, a change letter is appended to the
module number on the second line of the header and a summary of the changes is entered in the
module’s change log.

Many of the figures that appear in this document have also appeared in the
CCSDS publications listed as references.

810-005, Rev. E
208, Rev.A

3

Contents

Paragraph Page

1 Introduction ... 5

1.1 Purpose... 5
1.2 Scope.. 5

2 General Information... 5

2.1 Telemetry Waveforms .. 6
2.2 Symbol Transition Density ... 8
2.3 BPSK, QPSK and SQPSK.. 8
2.4 Symbol Quantization .. 9
2.5 Forward Error Correcting Codes... 10

2.5.1 Convolutional Codes... 10
2.5.2 Frame Synchronization ... 13

2.5.2.1 Bit Domain Frame Synchronization... 13
2.5.2.2 Symbol Domain Frame Synchronization 15

2.5.3 Randomization and De-randomization ... 17
2.5.4 Reed-Solomon Code ... 18

2.5.4.1 Reed-Solomon Encoder... 18
2.5.4.2 Concatenated Convolutional and Reed–Solomon Code 18
2.5.4.3 Interleaving... 18

2.5.5 Virtual Fill .. 21
2.5.6 Turbo Codes ... 23

2.5.6.1 Turbo Code Encoder ... 24
2.5.6.2 Turbo Code Decoder ... 26

2.5.7 Code Performance... 27
2.6 Time Tagging... 29
2.7 Data Formatting.. 30
2.8 Supported Telemetry Configurations .. 31

3 Proposed Capability ... 34

3.1 Low-Density Parity-check (LDPC) Codes .. 34

 References ... 36

810-005, Rev. E
208, Rev.A

4

Illustrations
Figure Page

1. Telemetry Modulation Waveforms ... 7

2. Quantization Effects on Decoder Performance.. 9

3. k=7, r=1/2 Convolutional Encoder Connection Vector Schematics 11

4. CCSDS Recommended 32-bit Attached Synchronization Marker 14

5. Attached Synchronization Markers for Turbo Codes... 16

6. CCSDS Pseudo-Randomizer/De-randomizer .. 17

7. Berlekamp Architecture Reed-Solomon (255, 223) Encoder....................................... 19

8. Effect of Interleaving on RS Performance.. 20

9. Reed–Solomon Symbol Arrangement for Interleave Factor (I) of 5............................ 22

10. Illustration of Virtual Fill ... 23

11. CCSDS Turbo Encoder .. 25

12. Turbo Code Structure in the Physical Channel.. 25

13. Cyclic Redundancy Check Generator .. 26

14. Relative Performance of Supported Codes.. 28

15. Measured Performance of DSN Turbo Decoder Showing Improvement with
Code Rate and Error Floor Effects (Block Size = 8920 Bits)....................................... 29

16. Example of Telemetry Data Flow Using Virtual Channels. .. 31

17. Spacecraft and Ground Configuration for BPSK Reed-Solomon,
Convolutional, and Concatenated Coding. .. 32

18. Spacecraft and Ground Configuration for BPSK Turbo Coding 32

19. Spacecraft and Ground Configuration for QPSK/SQPSK Convolutional
and Concatenated Coding. .. 33

20. Spacecraft and Ground Configuration for QPSK/SQPSK Turbo Coding..................... 32

21. LDPC and Turbo Code Comparative Performance ... 35

810-005, Rev. E
208, Rev.A

5

Tables

Table Page

1. Convolutional Decoder Characteristics... 12

2. Bit Domain Frame Synchronization Parameters.. 14

3. Turbo Code Information Block and Codeblock Lengths ... 24

4. DSN Turbo Decoder Characteristics... 27

5. DSN Time Tagging .. 30

6. Codeblock Lengths for Supported LDPC Code Rates ... 35

1 Introduction

1.1 Purpose

This module describes the capabilities and performance of the telemetry decoding
and frame synchronization equipment used by the Deep Space Network (DSN) in order to assist
the telecommunications engineer in designing compatible spacecraft equipment.

1.2 Scope

The detailed discussion in this module is limited to the performance of equipment
that is currently installed at the Deep Space Communications Complexes (DSCCs) and performs
data extraction in real time. Additional factors that affect telemetry performance such as
imperfect residual or suppressed carrier synchronization (radio loss), imperfect subcarrier and
symbol synchronization, and waveform distortion are discussed in module 207.

2 General Information
Extracting data from spacecraft return link telemetry includes those processes that

convert radio frequency energy into one or more bit or symbol streams (discussed in module
207) and those processes that convert the received symbol stream to a replica of the data
collected onboard the spacecraft that are discussed in this module. Throughout this module, the
term bit is used to represent the smallest unit of user data and the term symbol is applied to what
is transmitted through the communications channel.

810-005, Rev. E
208, Rev.A

6

2.1 Telemetry Waveforms

All modern spacecraft utilize pulse code modulation (PCM) to transfer binary
data between the spacecraft and the mission operations. The data are phase-modulated onto an
RF carrier (PCM/PM) or used to switch the phase of a subcarrier by plus or minus 90-degrees.
The subcarrier is then phase modulated on the carrier for transmission via the space link. This
modulation scheme is referred to as PCM/PSK/PM. Phase modulation is used because it has a
constant envelope that enables non-linear amplifiers to be used. Non-linear amplifiers tend to be
more efficient than the linear amplifiers that would be necessary if the envelope (amplitude)
were used to carry information. Phase modulation is also immune to most interference that
corrupts signal amplitude.

Although these techniques are referred to as pulse code modulation, they do not
use pulses in the conventional sense. They use non-return to zero waveforms that can be
envisioned as a pulse starting as a transition from a zero voltage to some other voltage and not
returning to zero until something happens. That “something” determines the characteristics and
name of the waveform. The simplest case is referred to as non-return to zero-level (NRZ-L)
where the cause of the waveform returning to zero is the bit stream level changing from a one to
a zero. Thus, the modulation waveform matches the data waveform. This is the most common
modulation waveform used but suffers from the problem that it is impossible to tell which of the
two levels is a one and which is a zero. It also has the problem that a long string of zeros or ones
will prevent phase transitions from occurring that are necessary to keep the receiver symbol
synchronizer in-lock.

The first of these problems can be solved by a technique called differential
encoding. There are two differential encoding waveforms referred to as non-return to zero-mark
(NRZ-M) and non-return to zero-space (NRZ-S). In the first case, the modulating waveform
changes whenever the input is a “one” bit (or “mark” from teletypewriter terminology) and
remains the same whenever the input is a “zero” bit (or “space” again, from teletypewriter
terminology). The second is the opposite. The waveform changes whenever a “zero” bit occurs
and remains the same whenever a “one” bit occurs. These waveforms enable the data polarity to
be determined even if the detected waveform is inverted. However, a failure to properly detect a
bit will always result in second error as the waveform restores itself. This causes an increase in
error rate and these waveforms are not normally used for deep space communication where there
is another method of determining waveform polarity (see the discussion of synchronization
markers) and anything that unnecessarily increases error rate is unacceptable. Similar to NRZ-L,
a long string of zeros when using NRZ-M or ones when using NRZ-S will suppress the phase
transitions necessary to keep the receiver symbol synchronizer in lock

There are three other PCM modulating waveforms that have been used for
spacecraft communication and solve the phase transition problem. These are bi-phase waveforms
where every bit interval contains at least one phase transition. There is one bi-phase waveform
corresponding to each NRZ waveform and they are referred to as Bi-φ-L, Bi-φ-M, and Bi-φ-S.
Bi-φ-L is also referred to as Manchester or Split-phase encoding. The result of including a
transition in every bit interval is to convert the transmitted spectrum to double-sideband having a
total bandwidth twice that of the NRZ waveforms with the peak of each sideband at the bit rate

810-005, Rev. E
208, Rev.A

7

and no energy at the center frequency. This leaves room for a residual carrier that can be detected
with minimum interference from the data it carries. However, the increased bandwidth
requirements of bi-phase modulation has normally limited its application to forward links where
bandwidth requirements are less, the frequency of phase transitions permit a very simple (and
low mass) symbol synchronizer onboard the spacecraft, and a residual carrier is useful for metric
data measurements.

Figure 1 depicts the six telemetry waveforms discussed above. An inverted NRZ-
M waveform is also included to illustrate its immunity to inversion. It is important to remember
that these waveforms are not part of the telemetry encoding and decoding schemes that are used
to improve telemetry performance. As mentioned above, differential encoding somewhat reduces
telemetry performance. The DSN can receive any of these waveforms but uses hardware
algorithms to convert them to NRZ-L either as part of the decoding process or before delivery to
the customer.

Figure 1. Telemetry Modulation Waveforms

810-005, Rev. E
208, Rev.A

8

2.2 Symbol Transition Density

The DSN derives symbol timing by observing successive phase transitions in the
detected NRZ waveform and refining this estimate from additional phase transitions. This
process requires that the received waveform have an adequate symbol transition density despite
the nature of NRZ waveforms to produce long periods without transitions when delivering
certain bit sequences. Transition density is defined as twice the probability that a symbol will be
a one multiplied by the probability that it will be a zero. As, for truly random data both of these
probabilities are 0.5, the transition density can have a value between 0 and 0.5. The DSN
recommends that the transition density be between 0.25 and 0.5 (See Module 207) with the
additional constraint that NRZ waveform has at least one phase transition every 64 symbol
periods. It is the responsibility of the telecommunications designer to ensure that sufficient phase
transitions are present in the transmitted data to maintain symbol synchronization. Several
techniques for increasing the transition density are discussed below.

2.3 BPSK, QPSK and SQPSK

The binary NRZ waveform is used to shift the phase of the transmitted carrier or
subcarrier in equal amounts from its rest phase. If the amount of phase shift is ±90 degrees, the
carrier or subcarrier is fully suppressed and the modulation is referred to Binary Phase Shift
Keying (BPSK). BPSK results in a 180-degree phase reversal at each NRZ waveform transition.
When PCM/PSK/PM is being used, the phase transitions are normally synchronized with
subcarrier zero-crossings. No such synchronization is attempted between the carrier and the data
for PCM/PM.

The capacity of the communications channel can be doubled by splitting the data
stream into two parts consisting of alternate symbols from the input data stream. These two parts
are used to BPSK modulate carriers that are in phase quadrature with each other and the two
modulated carriers are summed for transmission. This technique is referred to as Quadrature
Phase Shift Keying (QPSK). Like BPSK, QPSK can produce 180-degree phase reversals when
the two modulated carriers change phase at the same time. A 90-degree phase change will occur
when only one of the two carriers changes phase.

Phase reversals of 180 degrees can be completely eliminated by employing
Staggered QPSK (SQPSK), also referred to as Offset QPSK (QPSK). In SQPSK, one of the two
waveforms is delayed by 1/2 symbol period so that simultaneous phase transitions never occur
and the greatest phase change in the transmitted waveform will be 90 degrees. SQPSK results in
less degradation than QPSK in a bandwidth-limited channel.

The Consultative Committee for Space Data Systems (CCSDS) recommends that
when a single data stream is being transferred, the stream be separated so that alternate symbols
are transmitted on the two quadrature channels. The DSN supports this modulation format for all
frequency bands and all supported data rates. The DSN also supports a modulation scheme for
use in the near-Earth 26 GHz allocation at data rates in excess of 10 Mbps where the data stream

810-005, Rev. E
208, Rev.A

9

is split into alternate bit streams, each bit stream is convolutionally coded, and the two symbol
streams are delivered to the QPSK modulators. Upon reception, the two streams are separately
decoded and then combined to recover the original data stream.

2.4 Symbol Quantization

Convolutional and Turbo codes, discussed below under Forward Error Correcting
Codes, use decoding algorithms that are able to take into consideration not only that a symbol
has been detected to be a one or a zero but also that a symbol is more likely to be a one than a
zero. The DSN receivers produce symbol values (referred to as soft symbols) that are quantized
as 8-bit values however the standard convolutional decoder only accepts 3-bit quantization. A
mapping is provided at the input of the convolutional decoder to convert the 8-bit values to 3-
bits. Figure 2 shows the effects of symbol quantization on convolutional decoder performance.
This figure is included to illustrate the need to perform any conversion between NRZ-L and
differential encoding prior to convolutional encoding and after convolutional decoding as the
DSN does not include a decoder for differential NRZ waveforms nor a method of converting
from differential waveforms to NRZ-L without simultaneously converting them to one-bit
quantization (hard symbols) which would result in a significant performance loss.

Figure 2. Quantization Effects on Decoder Performance

810-005, Rev. E
208, Rev.A

10

2.5 Forward Error Correcting Codes

Almost all spacecraft employ forward error correcting (FEC) codes to make more
efficient use of the communications channel. Forward error correcting codes add additional
symbols to the transmitted data stream that the decoder can use to improve its estimate of the
encoded bit stream. The exceptions to FEC use would likely be extremely high data rate
transmissions where adequate signal power is available to make the gain achieved by coding
unnecessary and any bandwidth needed for the symbols added by coding is unavailable.

The DSN supports two convolutional codes, the Consultative Committee for
Space Data Systems (CCSDS) standard Reed-Solomon code, and the CCSDS Turbo codes.
Convolutional codes are used because they achieve significant coding gain with simple, highly
reliable encoders and their decoders are of reasonable complexity. They also provide low latency
and are useful when conditions may prevent a block of symbols from being received. The Reed-
Solomon code provides excellent performance with minimum bandwidth expansion in a high
signal-to-noise environment. It is most often used as an outer code in combination with a
convolutional inner code but may be used by itself under appropriate signal conditions. Turbo
codes provide near-Shannon-limit error-correction performance with reasonable encoding and
decoding complexity. The DSN presently includes an additional convolutional decoder that is
used for the Cassini spacecraft support but it will be removed from service at the end of that
mission.

2.5.1 Convolutional Codes
Convolutional codes are specified by their constraint length (K) and rate (r).

Constraint length is the number of sequential input bits required to define the output symbols at
any point in time. Rate is the number of data bits with respect to the number of coded symbols
expressed as a fraction. In general, the performance of a convolutional code increases directly
with k and inversely with r, but codes must be selected carefully because the channel bandwidth
also varies inversely with r and decoder complexity increases exponentially with k.

The most common convolutional code is the CCSDS k=7, r= 1/2 (7, 1/2) code.
This code falls into a category referred to as transparent codes meaning that if the input to the
encoder or decoder is inverted, the output will be inverted. Thus, the phase ambiguity associated
with BPSK modulation does not need to be resolved until the coding gain is achieved. A
convolutional encoder consists of a k-stage shift register with the outputs of selected stages
connected by r exclusive-OR connection vectors. The r outputs (in this case 2) are transmitted
alternately through the communications channel. The recommended code inverts the output of
one of the two connection vectors which ensures that sufficient transitions will be available to
keep the receiver symbol synchronizer in lock. A diagram of the CCSDS (7, 1/2) code is shown
in Figure 3. Figure 3 also shows a variation of this code used on some legacy deep space
missions. The only difference between the two codes is the order in which symbols from the two
connection vector outputs are transmitted. The DSN can decode either variation with or without
the alternate symbols being inverted. The capabilities of the DSN convolutional decoder are
summarized in Table 1.

810-005, Rev. E
208, Rev.A

11

Figure 3. k=7, r=1/2 Convolutional Encoder Connection Vector Schematics

810-005, Rev. E
208, Rev.A

12

Table 1. Convolutional Decoder Characteristics

Parameter Value

Constraint length 7

Code rate 1/2

Connection vectors C1 = 1111001, C2 =11011011 or
C1= 11011011, C2 = 1111001

Alternate symbol inversion Selectable

Input quantization 3 bits (8 levels)

Symbol (Input) rate 4 s/s to 13.2 Ms/s (max.)

Bit (Output) rate 6.6 Mb/s (max.)

Node synchronization Symbol Error Rate or
Metric Normalization Rate

Node sync acquisition ≤ 5000 bit times for Eb/N0 ≥ 0.5 dB
(99% probability)

Performance vs. theoretical
(for 3-bit quantization) ≤ 0.05 dB

A convolutional decoder must establish node synchronization in order to correctly
decode the incoming symbols. That is, which symbol of each received symbol pair represents the
first symbol that was transmitted. For an r= 1/2, transparent code, there are only two possibilities.
The DSN decoder provides two methods for doing this, symbol error rate (SER) node
synchronization and metric normalization rate (MNR) control.

The first method relies on the fact that when the decoder is operating properly the
probability of the decoder falsely decoding a bit is at least two orders of magnitude less than the
probability of a channel symbol error. The output can therefore be re-encoded and the resultant
symbols compared with a delayed copy of the received symbols (to account for decoder delay).
The number of differences between these two symbol streams will be an almost true count of the
number of symbol errors received by the decoder. The maximum number of symbol errors and
the interval over which these symbol errors are counted may be set over the range of 1 to 65535
at decoder initialization. Engineering research suggests that the decoder should obtain proper
node sync alignment when the maximum number of symbol errors is set to 420 and the number
of decoded bits in which this count is reached is set to 2000 provided the symbol SNR is greater
than or equal to –2.5 dB. This same technique of re-encoding the output bits and comparing them
to a suitably delayed version of the input symbol stream is used to provide an estimate of the
Eb/N0 with an accuracy of 0.1 dB provided that symbol errors are occurring. Under signal level
conditions greater than Eb/N0 = 12dB (where there are few symbol errors), the estimate of Eb/N0
becomes unreliable.

810-005, Rev. E
208, Rev.A

13

The second method relies on the fact that decoders based on the Viterbi algorithm
maintain state metrics that need to be normalized periodically to prevent register overflow. If
normalizations are occurring more frequently than a preset interval, the decoder will switch to
the alternate node sync and attempt reacquisition. Both the permitted number of normalizations
and the interval (as a number of decoded bits) over which this permitted number is accumulated
may be set during encoder initialization. The maximum number of normalizations may be set
over the range from 4 to 2036, modulo 8 (4, 12, 20, … 2036) and the interval used to detect this
threshold may be set to the greater of 256 or 1 to 65535, modulo 256 bits. Engineering research
suggests that the decoder should obtain proper node sync alignment with the maximum number
of normalizations set to 180 and the interval set to 2048 bits provided the symbol SNR is greater
than or equal to –2.5 dB.

For extremely low signal-to-noise ratios or if the received symbol stream is
invalid, there is a possibility that the decoder will choose the wrong node sync position. If this is
detected, the decoder can be commanded to attempt resynchronization but there is no guarantee
that the resynchronization will result in the alternate node sync being chosen.

The output stage of the convolutional decoder can be set to perform the
conversion to NRZ-L should another telemetry waveform have been employed on the RF
channel. The decoder can be operated in a pass-through mode (no decoding) so the waveform
conversion capability can be used for data that are not convolutionally coded.

The convolutional decoder presently used for the Cassini spacecraft support is
capable of decoding constraint lengths up to k=15 and rates to r=1/6. This decoder was also used
with a different k=15, r=1/6 code for the Mars Pathfinder spacecraft and was programmed for an
experimental k=15, r=1/4 code for the Galileo spacecraft but this code was never used when the
Galileo X-band antenna failed to deploy correctly. As noted earlier, this decoder will be removed
at the end of the Cassini project.

2.5.2 Frame Synchronization
Frame synchronization must be established before processing any block code such

as Reed-Solomon or Turbo codes or before formatting the data for delivery. Synchronization is
accomplished by preceding each codeblock or transfer frame with a fixed-length Attached
Synchronization Marker (ASM). This known bit pattern can be recognized to determine the start
of the codeblocks or transfer frames. It also can be used to resolve the phase ambiguity
associated with BPSK or QPSK (SQPSK or OQPSK) modulation. The DSN contains two frame
synchronizers. The first of these operates in the bit domain and is used with convolutionally
coded, Reed-Solomon coded, or uncoded data. The second operates in the symbol domain and is
used with Turbo coded data.

2.5.2.1 Bit Domain Frame Synchronization
The Consultative Committee for Space Data Systems has adopted the 32-bit ASM

shown in Figure 4 for synchronization in the bit domain. The pattern is represented in
hexadecimal as 1ACFFC1D but any pattern having a length of 8 to 64 bits such as the Inter-
range Instrumentation Group (IRIG) patterns can be accommodated.

810-005, Rev. E
208, Rev.A

14

Figure 4. CCSDS Recommended 32-bit Attached Synchronization Marker

The DSN bit-domain frame synchronizer operation is defined by four operating
modes: Search, Verify, Lock, and Flywheel. Parameters that affect the operation of the
synchronizeer are discussed in the following paragraphs and summarized in Table 2.

Table 2. Bit Domain Frame Synchronization Parameters

Parameter Value

Frame length 8 – 65536 bits in multiples of 8

ASM length 8 – 64 bits

ASM search direction Forward, Reverse, or Both

Bit-slip window 0 to 3 bits

In-lock bit error tolerance
(permissible ASM bit errors while achieving lock) 0 to 31 bits

Number of verify frames 0 to 31

Automatic polarity correction Enable or Disable

Out-of-lock bit error tolerance
(permissible ASM bit errors while in-lock 0 to 31 bits

Maximum flywheel frames) 0 to 31

Maximum time to achieve lock 4 frames provided BER ≤ 10–2
(99.6% probability))

In the Search mode, the synchronizer assembles all received bits into blocks of the
specified length while it attempts to find a pattern in the data that differs from the known ASM
by less than a specified number of bit errors. The specified number of bit errors from the
synchronization marker is called the In-lock Bit Error Tolerance (IL_BET) and can have a value
from 0 to 31. It does this for the ASM as specified, the inverse of the ASM as specified and, if
requested, both the normal and inverse of the ASM with the bit order reversed. When a suitable
pattern is found, the block being assembled is flagged as a short block ending with the assumed

810-005, Rev. E
208, Rev.A

15

sync marker and the subsequent received bits are collected into a new data block of the specified
length for delivery to the next step in the telemetry processing process. At this point, the
synchronizer advances to the Verify mode. Should an inverse of the ASM have been detected,
the polarity of all bits is inverted at they are assembled in the data block. Thus, the ambiguity
associated with BPSK modulation is automatically resolved.

In the Verify mode, the synchronizer starts looking for an acceptable ASM a few
bit periods (referred to as the bit-slip window) before the specified length of the data block. An
“acceptable” marker is one that has no more than IL_BET bit errors from the one previously
detected. Should it find the pattern, it increments a counter towards declaring synchronization to
be in-lock. Should it not find the pattern, it places the bits that it expected to be a sync maker at
the front of the next data block and reverts to the Search mode until a suitable marker is found.
The synchronizer remains in the Verify mode until the required number of sequential frames has
been found at which time the synchronizer advances to the Lock mode. This number of frames
that must be successfully detected before declaring lock can be set over the range of 0 to 31 with
zero meaning that the Verify mode is skipped.

In the Lock mode, the synchronizer continues to examine the data stream for an
acceptable ASM within the bit slip window using a bit error tolerance referred to as the Out-of-
lock Bit Error Tolerance (OOL_BET) that can be set independently of IL_BET over the range of
0 to 31. The synchronizer remains in the Lock mode until no acceptable ASM is detected.
Should this occur, the synchronizer places itself in the Flywheel mode.

In the Flywheel mode, the synchronizer discards the received bits that occurred
where the ASM was anticipated and continues to place the remaining received bits into blocks of
the specified frame size. It will continue this process until from 0 to 31 ASMs have been missed
at which point it will switch to the Search mode. Should a frame with less than IL_BET errors be
recognized at the appropriate place and before the maximum number of flywheel frames has
occurred, the synchronizer will return to the Lock mode.

2.5.2.2 Symbol Domain Frame Synchronization
The symbol domain bit synchronizer is part of the DSN Turbo decoder and

includes automatic polarity correction to resolve the BPSK phase ambiguity. Although the
operation is essentially similar to the bit domain frame synchronizer, the parameters have been
optimized through simulations and are not available for user modification.

Synchronization in the symbol domain requires longer synchronization markers
because the lack of coding gain before synchronization can result in enough symbol errors
occurring during a 32-bit sequence to prevent reliable recognition. In addition, the performance
gain that is achieved by increasing the code rate comes at the expense of a further reduction of
symbol signal to noise ratio resulting in a further increase in symbol errors. To accommodate
these factors, the CCSDS has recommended synchronization markers having a length of 32
symbols divided by the code rate, r. The recommended CCSDS synchronization markers for
Turbo codes are illustrated in Figure 5.

810-005, Rev. E
208, Rev.A

16

Figure 5. Attached Synchronization Markers for Turbo Codes

810-005, Rev. E
208, Rev.A

17

2.5.3 Randomization and De-randomization
The transition density of data may not be adequate for the receiver to maintain

symbol synchronization if the data have not been convolutionally coded or when convolutional
coding is used without alternate symbol inversion. This is especially true with NRZ-L uncoded
data or when Reed-Solomon coding is used by itself as a sequence of consecutive ones or zeros
for some period will provide no transitions.

The required transition density can be achieved for all data streams by modulo-
two adding a standard pseudo-random, 255-bit sequence to the stream as it is formed into
codeblocks or transfer frames for transmission and then modulo-two adding the same sequence
to the received data in the received codeblocks. The code is arranged so that the first bit of the
code is added to the first bit in the codeblock or transfer frame and the code is repeated as many
times as necessary until the codeblock or transfer frame is completed. The DSN provides the
capability to de-randomize uncoded, convolutionally coded, and Reed-Solomon coded data using
the CCSDS pseudo-randomizer illustrated in Figure 6.

Figure 6. CCSDS Pseudo-Randomizer/De-randomizer

810-005, Rev. E
208, Rev.A

18

2.5.4 Reed-Solomon Code
Reed-Solomon (RS) codes are linear block codes for hard-coded (one-bit

digitized) data steams. They are often used in combination with a convolutional inner code that is
applied between the point at which the RS coding is complete and the communications channel
and then removed prior to RS decoding however, they can be used by themselves in high signal-
to-noise environments. The code is systematic, meaning that the input bits appear, unchanged, in
the output stream followed by parity information that is used by the decoder to correct errors.
This property can be useful in forensic analysis of corrupted data. The codes, themselves, are
also transparent however, the DSN implementation will always resolve the BPSK phase
ambiguity prior to RS decoding. This is important because use of virtual fill, described below,
renders the code non-transparent.

The RS code adopted by the DSN is one of the two RS codes recommended by
the CCSDS and is referred to as the RS (255,223) code. The code divides the input bits into 8-bit
sequences to form symbols that are concatenated into a 255 symbol codeword. The RS encoder
creates parity symbols from these information symbols that enable the decoder to correct any
combination of E or fewer symbol errors in each codeword. The value E is referred to as the
code redundancy and, for the supported code, has a value of 16. The output of the encoder
consists of the 255 information symbols followed by 32 (2E) parity symbols. A complete
description of this code is contained in references 3 and 4.

2.5.4.1 Reed-Solomon Encoder
The most common architecture for an RS encoder is named the Berlekamp

Architecture, after its inventor. This architecture, in combination with appropriate selection of
the RS code generator polynomial, enables parity symbols to be calculated using bit-serial
multipliers constructed with a matrix of exclusive OR gates. Figure 7 shows the design of a
Berlekamp encoder for producing the DSN/CCSDS standard RS code that includes support for
interleaving and virtual fill as discussed below.

2.5.4.2 Concatenated Convolutional and Reed–Solomon Code
Errors in convolutionally coded channels tend to occur in bursts that result when

noise causes the decoder to momentarily follow the wrong path through the decoding trellis. The
combination of an outer Reed–Solomon (RS) code with an inner convolutional code provides
good burst-error correction with minimal bandwidth expansion.

2.5.4.3 Interleaving
The burst errors associated with Viterbi decoding can be as long as several

constraint lengths and equivalent to several consecutive RS symbols. Thus, several closely
spaced error bursts can exceed an RS decoder's error correction capability. Interleaving is a
technique that spreads the effects of burst errors across several RS codewords. The effect of
interleaving RS coding performance is illustrated in Figure 8.

810-005, Rev. E
208, Rev.A

19

Figure 7. Berlekamp Architecture Reed-Solomon (255, 223) Encoder

Fi
gu

re
 7

: R
ee

d–
So

lo
m

on
 E

nc
od

er
 fo

r R
S

(2
23

, 2
55

) C
od

e

810-005, Rev. E
208, Rev.A

20

Figure 8. Effect of Interleaving on RS Performance

810-005, Rev. E
208, Rev.A

21

Interleaving is accomplished by storing partially completed parity symbols in 31,
8I-bit shift registers for parity symbols (I – 1) through 32I and one 8(I – 1)-bit shift register,
where I is the interleave factor so that the parity symbols from any codeblock are not transmitted
consecutively.The first 8 bits of input data are collected to form an RS symbol as these bits are
being delivered to the convolutional encoder or the information channel. When the symbol is
complete, it is transferred into the parity computer that computes the first bit of partial parity
“instantaneously” so an output of the parity registers is available for modulo two addition (XOR)
with the first bit of the next input symbol. This output will either be the result of the parity
calculation if I = 1 or a zero if I > 1. As the remaining 7-bits of the second symbol are being
collected, seven additional bits of partial parity are calculated from the first symbol and pushed
into the parity registers resulting in additional bits being supplied for modulo two addition as the
input bits are formed into symbols. This process continues until 223I symbols have been
processed When I symbols have been processed, the output of the parity registers ceases to be
the zeroes and each output bit includes the partial parity computed at all prior 8I intervals.

When 223I input symbols have been processed but before the last symbol is
transferred to the parity calculation matrix, the input bit stream is set to all zeroes, guaranteeing
that there will be no further changes to the collected parity symbols, and the output of the parity
register array is connected to the convolutional encoder or the information channel. The last
symbol is then processed resulting in the first parity symbol being delivered to the convolutional
encoder or the information channel and the remaining symbols are clocked from the array while
the array is filled with zeroes in preparation for processing the next codeblock..

Since the input data are passed directly to the convolutional encoder or
information channel as the parity symbols are being calculated. Thus, the code remains
systematic − independent of the interleave factor. The 32 parity symbols from the 223I blocks of
information symbols are dispersed across the entire 32I parity symbol portion of the codeblock at
I-symbol intervals. Figure 9 illustrates the symbol arrangement for an interleave factor of 5.

When the data are received, they are written into an array from which the parity
symbols associated with each of the I RS codewords can be separated. DSN supports
interleaving for values of I between 1 (no interleaving) and 8.

2.5.5 Virtual Fill
The maximum amount of input data that can be transmitted in a codeblock varies

from 1784 bits (with no interleaving) to 14,272 bits (with an interleaving depth of 8). If a
transfer frame has less data than 1784I bits (where I is the interleave factor), the codeblock can
be completed by inserting virtual fill (all-zero RS symbols) between the ASM and the start of the
input data. The amount of virtual fill (in units of 8-bits) must be fixed for a tracking pass and is
inserted into the parity generator by the encoder and into the received symbol stream before it is
decoded however these extra symbols are not transmitted. It is the fact that zeroes are inserted
into the received data stream by the decoder that renders the code non-transparent because,

810-005, Rev. E
208, Rev.A

22

Figure 8: Reed–Solomon Symbol Arrangement for Interleave Factor (I) of 5

Fi
gu

re
 9

: R
ee

d–
So

lo
m

on
 S

ym
bo

l A
rr

an
ge

m
en

t f
or

 In
te

rle
av

e
Fa

ct
or

 (I
)

of
 5

810-005, Rev. E
208, Rev.A

23

should an inversion have occurred, it would be necessary to insert ones instead of zeroes and this
cannot be known. The efficiency of RS coding will decrease as the amount of virtual fill
increases as the number of parity symbols remains fixed while the number of data symbols
decreases. An illustration of virtual fill is shown in Figure 10.

VIRTUAL FILL
(TO COMPLETE
CODEBLOCK)

TRANSFER FRAME
(UNCODED)

RS PARITY
SYMBOLS

LOGICAL CODEBLOCK

TRANSFER FRAME
(UNCODED)

RS PARITY
SYMBOLS

TRANSMITTED CODEBLOCK

ASM

ASM

RS Encoder

Communications
Channel

VIRTUAL FILL
(INSERTED BY

DECODER)

TRANSFER FRAME
(UNCODED)

RS PARITY
SYMBOLS

LOGICAL CODEBLOCK

ASMRS Decoder

ASM

ASM

ASM

Figure 10. Illustration of Virtual Fill

2.5.6 Turbo Codes
Turbo codes provide error correction performance within approximately 0.8 dB of

the theoretical limit at a BER of 10–6. This performance is achieved using encoders and decoders
of reasonable complexity but at the expense of increased latency. A turbo code is a systematic
block code where two sets of parity symbols from independent recursive convolutional encoders
are provided. The encoders employ trellis termination so that the codeblock both begins and ends
in a known state.

The use of recursive convolutional encoders is one feature of turbo codes. The
second is the presence of an interleaver at the input of one of the convolutional encoders that
changes the order of the information bits before they are encoded. It is the presence of the
interleaver that establishes the minimum latentcy as equaling the block size as an entire block of
data must be assembled before the parity generation process can begin. Although the information
bits appear, unchanged, in the encoded output, they do not appear contiguously as is the case
with Reed Solomon codes.

810-005, Rev. E
208, Rev.A

24

The DSN provides support for the turbo code specified in CCSDS
Recommendation 131.0-B-1 for information block lengths (k) of 1,784, 3568, 7136, 8920 bits
and nominal code rates (r) of 1/2, 1/3, 1/4, and 1/6. The recommendation also permits an
information block length of 16,384 bits however the encoder for this block length has not been
completely specified and it is not supported by the DSN, The four supported block lengths are
the same as would be required for Reed-Solomon encoding using an interleave factor (I) of 1, 2,
4, or 5.

2.5.6.1 Turbo Code Encoder
Figure 11 illustrates the design of a CCSDS compliant turbo encoder. In actual

practice, either the entire encoder or the information block buffer and interleaver (with
appropriate changes to the input switching) must be duplicated to ensure a constant flow of
symbols in the information channel. An actual implementation would also include the capability
to preface each codeblock with the synchronization marker described above.

A block of information bits is entered into the information block buffer and the
interleaver that stores them in accordance with the permutation algorithm defined by the
recommendation. When the buffer and interleaver are full, the information is clocked into the
encoders and the resultant symbols are transferred to the information channel in the order shown
on the figure. When the last information bit has been transferred into each encoder, the switches
at their inputs are placed in position 2 and the encoders permitted to run for four additional clock
cycles. This causes four zeros to be entered into the encoders terminating the trellis. The encoder
continues to output nonzero encoded symbols during trellis termination producing four extra
symbols from the feedback line in addition to the k information bits.

The presence of the trellis termination symbols results in the channel code rates
being slightly smaller than the nominal code rates. The information block and codeblock lengths
for the 5 supported turbo codes are shown in Table 3. The structure of the turbo encoded data in
the physical channel is illustrated in Figure 12.

Table 3. Turbo Code Information Block and Codeblock Lengths

Codeblock length Information block
length, k, bits

Corresponding
Reed-Solomon

Interleave depth, I Rate 1/2 Rate 1/3 Rate 1/4 Rate 1/6

1784 1 3576 5364 7152 10728

3568 2 7144 10716 14288 21432

7136 4 14280 21420 28560 42840

8920 5 17949 76772 35696 53544

16384* N/A 32776 49164 65552 98328

* Note: This information block length is not supported by the DSN.

810-005, Rev. E
208, Rev.A

25

Figure 11. CCSDS Turbo Encoder

Information and Parity

(k/r symbols)

Termination Sequence (4/r symbols)

Synchronization Marker (32/r symbols)

k = information block size (1784, 3568, 7136, 8920, or 16384 bits)

r = code rate (1/2, 1/3, 1/4, or 1/6)

Figure 12. Turbo Code Structure in the Physical Channel

810-005, Rev. E
208, Rev.A

26

2.5.6.2 Turbo Code Decoder
Upon recognizing the end of the synchronization marker, the turbo decoder uses a

demultiplexer to separate the information symbols from the two sets of parity symbols and direct
the information symbols and each of the parity streams into separate decoders. Each decoder
makes a Maximum A posteriori Probability (MAP) estimate for each bit from the uncoded
information symbols (in normal or permuted form, as appropriate) and the parity symbols
generated by its corresponding encoder. The decoders exchange their MAP estimates via the
appropriate permutation matrix to be used by the opposite decoder as a priori estimates for a
second iteration. The exchange of MAP estimates continues for a specified number of times or
until a satisfactory convergence is reached. Engineering research recommends 10 iterations and
values as low as 6 have been successfully used in high data rate applications. The final output is
a hard-quantized version of the likelihood estimates from either one of the decoders.

Unlike a Reed-Solomon decoder, there comes a point where a further increase in
the Eb/N0 does not significantly increase a turbo decoder’s performance. This region is referred
to as the turbo decoder error floor and, for the recommended codes, occurs at a BER of less than
10–7. For operation near this region it is recommended that the data content of each information
block be reduced to allow for a cyclic redundancy check (CRC) as an independent check on the
decoding process to be inserted at the end of the codeblock. The DSN supports the 16-bit CRC
specified in CCSDS Recommendation 132.0-B-1. A diagram of the CRC generator is shown in
Figure 13. When CRC checking is enabled, the DSN decoder flags frames that are not
successfully decoded but delivers all bits to the user.

Figure 13. Cyclic Redundancy Check Generator

In addition to the latency required to create turbo-encoded data onboard the
spacecraft, the DSN requires time to perform the iterative decoding process. The DSN turbo
decoder is actually a set of parallel decoder modules where each module is filled with symbols
while previously filled modules are either iterating or delivering their decoded results. The

810-005, Rev. E
208, Rev.A

27

decoder provides control over the number of iterations performed and a dimensionless
convergence confidence threshold normally set at 100. The decoding process is considered
complete if the confidence level at the end of an iteration exceeds the selected confidence
threshold or if the specified maximum number of iterations is reached. The characteristics of the
DSN Turbo Decoder are summarized in Table 4.

Table 4. DSN Turbo Decoder Characteristics

Parameter Value

Code Supported CCSDS

Information Block Lengths (K) 1784, 3568, 7136, 8920

Code Rates (r) 1/2, 1/3, 1/4, 1/6

ASM patterns CCSDS compliant

Maximum Input Symbol Rates

Rate 1/2, 3.2 Msps
Rate 1/3, 4.8 Msps
Rate 1/4, 6.4 Msps
Rate 1/6, 6.0 Msps

Number of Iterations 1 to 20 (nominal = 10)

Stopping Rule Threshold 0 (no confidence) to 32767
Nominal value = 100

Cyclic Redundancy Check CCSDS 16-bit, Optional

2.5.7 Code Performance
The performance of a digital communications channel is expressed in the form of

an error rate that is a function of the bit energy to noise spectral density ratio Eb/N000. The two
most common error rates used are the bit error rate (BER) and the frame error rate (FER). The
FER, while often the more significant of the two measures for judging performance, does not
lend itself to comparison between code types because of its dependency on the code and the
characteristics of the communications channel. On the other hand, BER is easily modeled for the
additive white Gaussian noise (AWGN) channel which is a reasonable approximation for the
deep space communications channel. Figure 14 provides a comparison of the BER performance
for the codes supported by the DSN. Figure 15 shows the measured performance of the DSN
Turbo Decoder for the same 8920 bit block size as Figure 14 but showing both the effects of
increased code rate and the error floor.

810-005, Rev. E
208, Rev.A

28

Figure 14. Relative Performance of Supported Codes

810-005, Rev. E
208, Rev.A

29

Figure 15. Measured Performance of DSN Turbo Decoder Showing Improvement

with Code Rate and Error Floor Effects (Block Size = 8920 Bits)

2.6 Time Tagging

The DSN annotates every frame of data delivered to the user with its Earth-
received time. The time may be specified as the beginning or end of each data frame depending
on spacecraft data processing requirements. The time is calculated by determining the exact time
the synchronization marker is recognized and adding a time delay measured when the equipment
was installed to move the reference point to the input of the antenna’s low noise amplifier. The
normal precision of the time tag is 1 ms however additional precision can be provided by
agreement between the DSN and users. Time tagging capability is summarized in Table 5.

810-005, Rev. E
208, Rev.A

30

Table 5. DSN Time Tagging

Parameter Value

Normal Delivered Accuracy Nearest ms

Station Reference Test input port before LNA

Reference as Delivered Leading edge of first bit of frame or
trailing edge of last bit in frame

Ultimate Accuracy (Except Turbo Codes) ±5 usec (for symbol rates > 2000 sps
and carrier loop SNR ≥ 20 dB)

Accuracy (Turbo Codes) TBD

2.7 Data Formatting

The result of the previously described processing is a series of fixed-length frames
of telemetry data. These content of these frames may represent a single stream of telemetry data
or a portion of several streams of telemetry data referred to as virtual channels, Virtual channels
allocate the physical channel on a frame by frame basis identified by a virtual channel identifier.
The DSN separates the frames based on the virtual channel identifier and creates independent
streams of telemetry data. The use of virtual channels enables portions of the data stream to be
delivered to different locations or with different latencies. Two types of telemetry frames are
supported. Version I Frames, originally specified in CCSDS Recommendation 102.0-B, have the
capability to support up to eight virtual channels numbered from 0 to 7. Version II Frames,
originally specified in CCSDS Recommendation 701.0-B, have the capability to support up to
sixty-four virtual channels. The DSN can combine from 1 to 16 of these channels into virtual
data streams and the same virtual channel may appear in multiple virtual data streams. The
number of virtual data steams that can be created for any one project is limited to 16.

Figure 16 provides an example of telemetry data flow when virtual channels are
being used. As shown in the figure, the contents of a virtual channel may be created by
combining packets from multiple sources. The packets from each source are identified by a
header that contains an Application Process ID (APID) and a packet length. This enables the user
to separate the packets from each source. Since the virtual channel identifier and packet header
fields within the transfer frames are not protected from errors, it is recommended that virtual
channels not be used unless frames are known to be decoded correctly as can be determined if
Reed-Solomon coding or a CRC field is used.

The DSN annotates each frame delivered to a user with received time and
accountability information for each channel being delivered as opposed to the physical channel.
The structure and detailed content of the data blocks as delivered is beyond the scope of this
document but several standard formats are available and deviations to these formats can be
negotiated as part of the establishment of detailed mission requirements.

810-005, Rev. E
208, Rev.A

31

Figure 16. Example of Telemetry Data Flow Using Virtual Channels.

2.8 Supported Telemetry Configurations

Figures 17 through 20 illustrate the telemetry coding configurations for
spacecraft and ground equipment that are supported by the DSN. The order in which the steps in
the coding and decoding process are performed are those recommended by the CCSDS and are
fixed by hardware design.

810-005, Rev. E
208, Rev.A

32

Figure 17. Spacecraft and Ground Configuration for BPSK Reed-Solomon,
Convolutional, and Concatenated Coding.

Figure 18. Spacecraft and Ground Configuration for BPSK Turbo Coding

810-005, Rev. E
208, Rev.A

33

Figure 19 Spacecraft and Ground Configuration for QPSK/SQPSK Convolutional
and Concatenated Coding.

Figure 20. Spacecraft and Ground Configuration for QPSK/SQPSK Turbo Coding.

810-005, Rev. E
208, Rev.A

34

3 Proposed Capability
The following paragraphs discuss capabilities that have not yet been implemented

by the DSN but have adequate maturity to be considered for spacecraft mission and equipment
design. Telecommunications engineers are advised that any capabilities discussed in this section
cannot be committed to except by negotiation with the DSN System Engineering and
Commitments Office.

3.1 Low-Density Parity-check (LDPC) Codes

Low-Density Parity-Check (LDPC) codes have been developed that provide near-
theoretical limit performance at high code rates to compliment the similar performance provided
by Turbo codes at low code rates. They promise to be especially useful in applications where the
bandwidth required to use a Turbo code is not available or would complicate spacecraft
equipment design. LDPC codes have an additional benefit that their decoder structure is more
appropriate for high-speed hardware implementation and, on the average, requires fewer
computations per decoded bit.

LDPC codes were originally invented by R. Gallager in 1961 but were largely
forgotten for 30 years. The discovery of an iterative decoding algorithm, now referred to as
Belief Propagation (BP) decoding, in the mid 1990s coupled with advances in digital processing
technology revived interest in the coding technique. LDPC codes are similar to turbo codes in
that they are binary block codes with large code blocks of hundreds to thousands of bits. The
codes selected for deep space applications are members of a class of LDPC codes referred to as
quasi-cyclic. This class of codes has an advantage that encoder implementation can be
accomplished with shift registers.

The particular codes selected for deep space application are described in the
CCSDS Experimental Specification 131.1-0-2. They are systematic and non transparent
requiring that phase ambiguities be resolved using the frame markers that are required for
codeblock synchronization. Although these codes theoretically have error floors, they are
typically at least two decades below those of Turbo codes so the CRC that is recommended with
Turbo codes is unnecessary with LDPC codes. The codes cannot guarantee sufficient bit
transitions to keep receiver symbol synchronizers in lock so the pseudo-randomizer described in
section 2.5.3 of this document is required unless the system designer verifies that sufficient
symbol transition density is assured by other means. Codeblock lengths for the supported code
rates are provided in Table 6.

Figure 21 is included to show how LDPC codes compliment Turbo codes. The
figure is in the symbol domain to make the effects of code rate more apparent and to prevent the
curves from over-writing each other if they were presented in the bit domain in a single figure.

810-005, Rev. E
208, Rev.A

35

Table 6. Codeblock Lengths for Supported LDPC Code Rates

Codeblock Length, n Information
Block Length, k Rate = 1/2 Rate = 2/3 Rate = 4/5

1024 2048 1536 1280

4096 8192 6144 5120

16384 32768 24576 20480

Figure 21. LDPC and Turbo Code Comparative Performance .

810-005, Rev. E
208, Rev.A

36

References
1 FR. G. Gallager, “Low Density Parity Check Codes,” IRE Transactions on

Information Theory, vol. IT-8, pp. 21–28, 1962.

2 CCSDS 102.0-B-5-S, Telemetry Channel Coding, Blue Book. Issue 5, November
2000.

3 CCSDS 130.0-G-1, Informational Report, TM Synchronization and Channel
Coding – Summary of Concept and Rationale, June 2006

4 CCSDS 131.0-B-1, Recommendation, TM Synchronization and Channel Coding

5 CCSDS 131.1-O-2, Experimental Specification, Low Density Parity Check Codes
for Use in Near-Earth and Deep Space Applications, September, 2007

6 CCSDS 701.0-B-2, Recommendation, Advanced Orbiting Systems, Networks and
Data Links: Architectural Specification

© <2009> California Institute of Technology.

Government sponsorship acknowledged.

